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ABSTRACT

Geometric  constraints are used in geometric  and feature modeling systems to 
impose  conditions  on  the  shape  of  a  product.  To  determine  whether  these 
conditions are correctly applied to a model, and to compute the final solution in 
which all conditions are satisfied, a geometric constraint solver is used.
Current  constraint  solvers  usually  handle  only  2D  constraints.  With  the 
introduction  of  solvers  that  support  3D  constraints,  the  interaction  and 
visualization  techniques  for  2D  constraints  are  no  longer  sufficient.  Also,  the 
feedback provided by the 2D constraint solvers, especially if  problems are not 
well-constrained, is limited and not applicable to 3D modeling environments.
In  this  paper,  a  workbench  is  presented  that  can  assist  a  user  in  defining 
geometric constraints in 3D and in creating a valid 3D model. Feedback provided 
by the solver is presented to the user in several ways that enable him to easily 
interpret this feedback.

Keywords: Geometric constraint solving, graph constructive approach, 
sketching, visual feedback

1. INTRODUCTION
Geometric constraint solvers are an important part of, in particular, parametric and feature-
based CAD systems. Parametric and feature models include constraints that impose conditions 
on the model of a product. A geometric constraint solver is used to find a configuration for a set 
of geometric objects, such that these satisfy a given set of constraints between them.
In current CAD systems, the graphical user interface (GUI) usually gives the user the ability to 
create a  2D sketch,  after  which constraints  (distances,  radii,  angles)  can  be added to  the 
sketch.  Operations  like  extrusion  can  be  applied  to  a  sketch,  to  create  a  3D component. 
Additionally, between 3D components, simple constraints can be defined to connect them to 
each other.
However,  a  model  may  be  incomplete  or  the  specified  constraints  can  be  conflicting,  in 
particular if  there are not enough constraints or too many constraints defined between the 
objects.  These  situations  are  called  underconstrained,  respectively  overconstrained.  The 
geometric constraint solver is used to detect such conflicts, and gives feedback to the user 
when a conflict has been detected. If  there are no conflicts,  then the constraint solver will 
compute the resulting configuration. In practice, it turns out that it is quite hard to define a 
system of constraints that is well constrained, and to get insight into why and where a system 
is under- or overconstrained.
Problems become even more severe when 3D systems, in which constraints can be defined on 
3D geometric  objects,  are  considered.  Although various 3D constraint  solving methods are 
available [4], e.g. graph constructive methods [5], there are few facilities to easily define 3D 
constraint systems and to get insight into the results of the solver.
In this paper, a workbench is presented that supports the user in these respects. Constraints 
can  be  defined  in  an  interactive  way  by  a  3D sketcher,  and feedback,  obtained from the 
constraint solver, is presented to the user in several helpful ways. A 3D graph constructive 
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constraint solver is used here, but many of the facilities of the workbench are more generally 
applicable with other geometric constraint solvers too. The main goal of the paper is to show 
the feasibility and usefulness of a workbench for geometric constraint solving in general.
Section 2 gives some background on geometric  constraint solving, and in particular on the 
graph constructive solver used here. Section 3 introduces the functionality of the workbench as 
a whole, and of the 3D sketcher in particular, and also gives some implementation aspects. 
Section 4 elaborates the feedback offered by the workbench to the user. Section 5 presents a 
case study. Section 6 gives some conclusions.

2. GEOMETRIC CONSTRAINT SOLVING
A system of geometric constraints consists of a finite set of geometric elements (the variables) 
and a finite set of geometric constraints (the relations) defined between these elements. In a 
CAD system, the user often draws a 2D/3D sketch that consists of points, lines and circles in 2D, 
and planes,  spheres  and cylinders  in  3D.  This  is  followed by the  assignment  of  geometric 
constraints, such as distance, angle, parallelism, concentricity, tangency and perpendicularity, 
between  geometric  elements.  When  the  geometric  elements  and  constraints  have  been 
defined, the user can initiate the solving process to solve the system of constraints (this can 
also be done automatically when the system is changed, if incremental solving techniques are 
used).
During the solving process, it may turn out that the system of constraints is not well specified 
by the user. To handle this, the solver can return three general distinct outcomes: under-, over- 
or well-constrainedness. When solving a system of geometric constraints, the system may have 
some degrees of freedom (DOF) left. In that case, an infinite number of solutions is possible. 
This situation is called underconstrained. A constraint problem is overconstrained if there is no 
solution to the problem. A  well-constrained problem is a problem that has a finite number of 
solutions.
Constraints that are not represented by actual values, but in general terms, have to be solved 
by a generic solver. Such a solver determines whether the geometric elements can be placed 
using the constraints, without taking the values that can be assigned to the constraints and 
geometric elements into account. If explicit values were assigned to each of the constraints, an 
instance of the general problem would have been created; such problems are solved by an 
instance solver. Several techniques can be used to solve constraint problems [4], including the 
following.
With local propagation [2], the system of constraints is represented in an undirected graph. The 
nodes of the graph represent the variables, constants and operations in the constraints. The 
individual  constraints  can  usually  be  solved  by  several  methods,  and the  constraint  solver 
selects  one  of  these methods.  A  problem cannot  be solved if  there  are  cycles  among the 
constraints, and this makes local propagation only useful for simple systems of constraints.
Numerical constraint solvers translate the constraints into a system of algebraic equations that 
are  solved  by  applying  iterative  techniques,  e.g.  the  Newton-Raphson  method  [10]  or  the 
relaxation method [13]. Numerical constraint solving is a general method and is, in comparison 
to  other  constraint  solving techniques,  able  to handle  large nonlinear  systems.  However,  a 
problem that often occurs is that geometric constraint systems have several solutions, whereas 
an iterative method can provide only one. Another problem is that if the initial configuration is 
not well chosen, the configuration will not converge to a solution or to an unwanted solution. 
Alternatives  have been brought  up,  e.g.  the use of  homotopy [9]  and bisection  [1].  These 
methods provide better solutions in some of the cases where normally convergence problems 
arise, but they are slow compared to the Newton-Raphson method.
Just  like  numerical  constraint  solvers,  symbolic  constraint  solvers try  to  solve  a  system of 
algebraic equations. But instead of using iterative techniques, symbolic algebraic methods are 
used to find the generic solution. Used methods are Wu-Ritt's decomposition algorithm [15] and 
the Gröbner basis method [8]. They change the set of equations to new forms, which are easier 
to  solve.  A  problem may  occur  when  certain  equations  in  the  basis  function  algebraically 
depend on one another when evaluated with specific constraint values [6]. At a generic level 
(where explicit values are avoided in the system of equations), the solver may come to the 
conclusion that a solution exists, whereas no specific configuration can be found to satisfy the 
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system of constraints. Other drawbacks are that the algorithm may require exponential running 
times and memory (w.r.t. the number of constraints).
Rule constructive solvers use rewrite rules to discover and execute the constraint steps [3, 7]. 
For example, Brüderlin [3] makes use of Prolog to define constraints in terms of rules (based on 
compass and ruler constructions) and facts (defined by the user in a sketch), which has the 
advantage that it can be easily extended to make the system more powerful. However, this 
method of  constraint  solving is  not  efficient  when large systems of  constraints  have to be 
solved. This is due to the searching and matching of the facts in the rule base.
Graph constructive solvers consist of two phases; the first phase is the analysis phase and the 
second the construction phase. In the analysis phase, the constraint problem, represented by a 
graph, is decomposed into several subproblems that can be solved, and be merged into the 
solution of the complete problem. For example, Hoffmann et al. [5, 6] make use of clusters to 
solve  geometric  constraint  problems.  In  the  second  phase,  the  construction  phase,  the 
subproblems are actually  solved and merged.  This  is  often done by symbolic  or  numerical 
methods. Indeed, with graph constructive solving, different combinations of approaches can be 
utilized to create a specific constraint solver for a specific task. The approach is efficient by 
decomposing a large system of constraints into smaller  subproblems,  which can usually be 
easily  solved.  Therefore,  this  is  a popular  approach to geometric  constraint  solving.  In this 
paper, it is assumed that the workbench is using a 3D graph constructive solver. The most 
important aspects of the specific solver used here will be discussed now; see [14] for more 
details.
The class of geometric constraint problems that can be solved is as follows. The variables are 
limited to 3D points and the constraints are limited to two types: distance (between two points) 
and angle (between the two lines from a point to two other points) constraints. The parameters 
of the constraints, i.e. the distance and angle values, are also part of the problem definition. A 
problem is represented as a constraint graph, a bipartite graph of which a vertex (node) is 
either a variable or a constraint, and an edge between a variable and a constraint indicates that 
the constraint is imposed on that variable.
The  first  phase  of  the  graph  constructive  method  is  the  analysis  phase.  In  this  phase,  a 
constraint problem is decomposed into subproblems of which the solution can be determined 
relatively easy. Subproblem solutions are represented by clusters of points of which the relative 
position and orientation are known. A cluster can be considered as a rigid body that can be 
translated and rotated, while remaining a solution.
When a cluster is formed, the relative position of the points in the cluster must be determined, 
where all constraints on these points must be considered simultaneously. These constraints can 
form cycles in the constraint graph, which must be solved simultaneously. Here, only cycles 
consisting of three constraints on three points are solved. The results are three-point clusters, 
i.e. triangles. For example, when the three distances are known between three points, then 
their relative position can be computed. Rules for this are referred to as triangle solving rules. 
The decomposition thus begins with the selection of clusters consisting of three points, of which 
the relative orientation and position can be determined by triangle solving rules.
In this phase, the merging of clusters is also planned, to create a complete decomposition of 
the problem. Clusters can be merged if  they share a number of point variables, i.e. if  they 
contain point variables with the same name, such that no degrees of freedom are left between 
these clusters. Three three-point clusters can be merged if they share four points, i.e. the three 
triangles can be merged into a tetrahedron, which is a 3D cluster. Two 3D clusters, which can 
be tetrahedrons or more complex configurations, that share three points can be merged by 
transforming one of the clusters such that the shared points coincide. These rules are referred 
to as cluster merging rules.
By merging clusters, larger clusters are obtained from which previously unknown distances and 
angles  can  be  determined.  For  example,  if  three  three-point  clusters  are  merged  into  a 
tetrahedron, all distances and angles in the tetrahedron are known. The newly known distances 
and angles may, in turn, be used to satisfy other (cycles of) constraints. 
In some cases, the decomposition into subproblems fails, in particular if there are too many or 
too  few  constraints  defined,  such  that  the  relative  position  and/or  orientation  cannot  be 
determined.  These  structural  problems  can  be  divided  into  two  groups:  structurally 
underconstrained  problems  and  structurally  overconstrained  problems.  A  well-constrained 
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tetrahedron consists of  four points and six distances (see Fig.  1a).  If  there are not enough 
constraints defined, then the problem is structurally underconstrained (see Fig. 1b). If there are 
too many constraints defined, then the problem  is structurally overconstrained (see Fig. 1c). 
However, even if there are exactly enough constraints defined, and thus the decomposition is 
successful, it is not guaranteed that the model is well-constrained, as will be shown later.

                      
(a) well-constrained (b) structurally underconstrained (c) structurally overconstrained

Fig. 1: Constrainedness of a tetrahedron

If the well-constrained tetrahedron from Fig. 1a is decomposed, then the result can be as shown 
in Fig. 2. This diagram shows the clusters created and the relations between these clusters. 
Distance constraints are shown as two-point clusters. The diagram shows the root cluster at the 
top, which is formed by merging the clusters below it that are connected to it by lines.  The 
decomposition algorithm works bottom-up, first creating a three-point cluster ABC by merging 
the distance constraints AB, AC and BC. This forms one side of the tetrahedron. Once a distance 
constraint has been merged into a cluster, it cannot be used to form other clusters, unless it is 
derived from the existing cluster. For example, to create cluster ACD, the distance constraints 
AC, AD and CD are needed, but AC has already been merged into cluster ABC. Therefore, AC is 
first derived from ABC, as can be seen in the decomposition, and then merged with AD and CD 
to form cluster ACD. To form cluster BCD, first BC and CD are derived from previously formed 
clusters, and then merged with BD. The clusters ABC, ACD and BCD are merged into cluster 
ABCD, which contains all  variables and constraints,  and therefore the constraint problem is 
structurally well-constrained.

Fig. 2: Decomposition of a well-constrained tetrahedron

The decomposition of the underconstrained tetrahedron from Fig. 1b is visualized in Fig. 3. In 
contrast to the well-constrained decomposition, there are now only two three-point clusters, 
ABC and ADB. Because there is no longer a distance constraint defined between the points D 
and C, a third three-point cluster cannot be formed. Now the three-point clusters have only two 
points  in  common,  which  is  not  enough  to  combine  the  clusters  (for  that  four  points  are 
necessary). If clusters cannot be combined to one root cluster, because of too few constraints, 
then the constraint problem is structurally underconstrained.
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Fig. 3: Decomposition of a structurally underconstrained tetrahedron

The  decomposition  of  the  overconstrained  problem  from  Fig.  1c  is  very  similar  to  the 
decomposition of the well-constrained problem in Fig. 2. The difference is that now the three-
point  cluster  BCD cannot  be determined,  because there are too  many constraints  defined, 
which makes the cluster overconstrained and the constraint problem as a whole as well.
After the decomposition and the merge plan have been determined in the analysis phase, in the 
construction  phase the  triangular  subproblems  are  solved  and  the  clusters  are  merged  to 
actually obtain the solution of the constraint problem.
To solve a triangular subproblem, which contains three points, three distances must be known, 
or two distances and one angle, or two angles and one distance. Five triangle solving rules are 
available for this. For example, if the three distances between the three points are known, two 
points can be arbitrarily fixed at the corresponding distance, and the third computed from the 
position of these two points and the other two distances. The other triangle solving rules all 
involve  one  or  two  angles,  but  are  also  straightforward.  In  solving  a  particular  triangular 
problem,  two  solutions  may  be  possible.  One  of  these  solutions  is  selected,  based  on  a 
prototype, i.e. a sketch of the intended solution provided by the user, so that, in the end, only 
the intended solution results, instead of several solutions. See [14] for details on this.
If solving a cluster with a triangle solving rule yields no solutions, then the cluster is incidentally 
overconstrained. This happens, for example, if the sum of two distances is smaller than the 
third distance.
Three three-point clusters, resulting from solving triangular subproblems, are merged into a 
tetrahedron if  they share four  points.  The three clusters that  are to be merged are rigidly 
transformed, i.e. translated and rotated, in such a way that the shared points coincide, and a 
tetrahedron  is  formed.  In  merging  three  three-point  clusters,  again  two  solutions  may  be 
possible, and again one of these solutions is selected using the prototype.
If the three three-point clusters cannot be merged, because there is no rigid transformation of 
the clusters such that the shared points form a tetrahedron, then the cluster is  incidentally 
overconstrained again.
Two 3D clusters, which can be tetrahedrons or more complex clusters, that share three points 
are  merged  by  rigidly  transforming  one  cluster  such  that  the  shared  points  coincide.  The 
required transformation is straightforward, and a new cluster is formed in this way.
To merge clusters that share three points, the relative position of these points in each cluster 
must obviously be equivalent; otherwise a rigid transformation cannot be determined. If they 
are not equivalent, then the system of constraints is incidentally overconstrained again. Cluster 
merging can also fail here because a set of three points does not always form a triangle. A 
triangle degenerates to a line if one of the edges has zero length, and it degenerates to a point 
if all edges have zero length. When merging two clusters based on a set of three shared points, 
and these points are degenerate in both clusters, then the merge cannot take place because 
one or  more rotational  degrees of  freedom are left.  In  this  case,  the system is  considered 
incidentally underconstrained.
Structurally over- and underconstrained situations can be resolved by removing, respectively, 
adding constraints. Incidentally over- and underconstrained situations, on the other hand, can 
be  resolved  by  changing  the  values  of  parameters  of  existing  constraints.  As  constraint 
problems  are  often  very  complex,  it  may  become  difficult  for  a  user  to  locate  where  a 
problematic situation occurs, and how to resolve it.  The workbench for geometric constraint 
solving, introduced in the next section, can be very helpful in this respect.
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3 THE WORKBENCH
The  workbench  for  geometric  constraint  solving  consists  of  several  components.  These 
components, and how they relate to each other, are shown in Fig. 4. The part of the diagram 
that is shaded, is the GUI from which the user can take actions, the other part is the graph 
constructive constraint solver.

Fig. 4: Workbench components

The 3D sketcher provides the user with an interface to create a rough sketch by placing points 
and lines. During or after placing these points and lines, the user can add constraints to the 
model. During the construction of the sketch, the constraint data is stored in the constraint 
graph, and the sketch without the constraints in the prototype. Performing actions in which the 
constraints are altered will directly result in an update of the constraint graph. When the user 
issues the command to solve the system of geometric constraints, then this system consisting 
of the constraint graph and prototype information will be used to solve the system. After the 
solving process, the result is returned. This initiates other processes, to create visual feedback. 
Different  views  are  used  to  return  feedback  to  the  user  about  the  system  of  geometric 
constraints  and to  help  producing  the  desired  sketch.  The  views  are  used to  visualize  the 
information retrieved from the solver and to exchange information with the sketcher. 
In the  decomposition view, the decomposition of the system of constraints into clusters,  as 
returned  by  the  solver,  is  shown.  This  is  very  useful  when  a  system  is  under-  or 
overconstrained. Individual clusters can be selected in this view, which will result in a similar 
selection in the sketcher. 
If the system of geometric constraints is well-constrained, the final solution can be visualized in 
the solution view. In this view, the sketch is transformed into a model where all constraints are 
satisfied. The sketch can be synchronized with the model in the solution view.
The decomposition view and the solution view, and the synchronization of the latter with the 
sketch, will be discussed in Section 4. Here the functionality of the sketcher will be outlined. 
Another sketcher for defining systems of constraints, somewhat similar to ours, is presented in 
[12]. However, that sketcher is used to support solution selection, whereas our workbench is 
intended to support  creation of  well-constrained systems.  Basically,  the functionality  of  our 
solver consists of the following:

• the usual user interface components,  such as a taskbar,  a toolbar,  viewports,  an object 
panel, and a status bar;

• points can be created, and are visualized as small spheres;
• lines can be created between two points, and are visualized as thin cylinders;
• the sketch is basically a wire frame, consisting of points and lines;
• different  viewports  can  be  used  to  simultaneously  display  a  side,  a  top,  a  front  and a 

perspective view of the sketch, for the creation and exploration of the sketch;
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• facilities for zooming, panning and rotating in these viewports;
• a distance constraint can be created by selecting two points or a line;
• a distance constraint is visualized as a thin cylinder between the two points, which may 

replace an existing line between the points, in a color different from the one used for lines;
• an  angle  constraint  can  be  created  by  selecting  three  points  or  two  lines  (or  distance 

constraints);
• an  angle  constraint  is  visualized  as  a  transparent  circle  section  between  two  lines  (or 

distance constraints);
• the possibility to fix a particular point, which will fix its position and give it a different color;
• the  ability  to  specify  and  consult  specific  information,  e.g.  the  position  of  a  point,  the 

distance parameter in a distance constraint, and the angle parameter in an angle constraint, 
in a dialogue box.

The user interface of the sketcher is shown in Fig. 5. The points are visualized as small spheres, 
and the lines and distance constraints as thin cylinders, to create depth in the sketches, in 
particular  a  better  distinction  between  overlapping  elements,  and  to  make  selection  of 
elements easier.

Fig. 5: User interface of the sketcher
The workbench has,  just  like the constraint  solver,  been implemented by using Python,  an 
object-oriented programming language. Qt [16] has been used to develop the user interface, 
making use of PyQt bindings [17]. For the 3D visualizations, OpenGL has been used, making 
used of PyOpenGL bindings [18].

4. VISUAL FEEDBACK
Once a system of geometric constraints has been created in the sketcher, it can be sent to the 
constraint solver to be solved. The result returned by the solver is often difficult to interpret, 
and it would be very helpful if the user would get feedback on how the system is constrained, 
and, if it is well-constrained, on what the final solution looks like. In this section, we discuss two 
views for the user to help in this respect: the decomposition view and the solution view. These 
views  are  fully  integrated  with  the  sketcher,  for  which  also  several  feedback  facilities  are 
presented.
First  of  all,  the  user  gets  a  textual  indication  on  how  the  system  is  constrained:  well-
constrained,  (structurally  or  incidentally)  underconstrained,  or  (structurally  or  incidentally) 
overconstrained. Notice that if the system is not well-constrained, it  may be simultaneously 
under-  or  overconstrained  in  several  parts,  or  even  underconstrained  in  one  part  and 
overconstrained in another part.
The decomposition view shows the decomposition of the system into clusters in the form of a 
tree. The decomposition for the well-constrained tetrahedron of Fig. 1a is shown in Fig. 6. It 
resembles the decomposition shown in Fig. 2.
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Fig. 6: Decomposition view

Large models lead to large decompositions and need basic, but essential interaction techniques 
to allow the user to investigate the decomposition. The whole tree or parts of it can be shown in 
the view. Together with a zoom option, translation sliders can be used to zoom in on a specific 
part of the tree. In addition, branches of the tree can be collapsed, so the user can concentrate 
on other branches. Collapsing part of the tree often results in white space, which is re-used: the 
tree is regenerated on the basis of the visibility of the clusters.
Clusters do not only hold information on how they relate to other clusters, but they also contain 
information that can be shown, after selection, in a transparent box (see Fig. 7), so it does not 
occlude parts of the tree. The box shows the constrainedness of the cluster, and the names of 
the points belonging to that cluster. If an individual point is selected, the name and position of 
the point are shown.

Fig. 7: Cluster information
Although the decomposition view can be useful to get feedback about the constrainedness of a 
system of geometric constraints, we also enable the user to get feedback in the sketch. Cluster 
information can be visualized in the sketch by a cluster hull, a convex hull containing the points 
that  are  part  of  the  cluster.  A  cluster  hull  can  consist  of  only  one  point  or  one  distance 
constraint, but can also contain several points, lines and constraints. When the user selects a 
cluster in the decomposition view, the cluster will be highlighted in the sketch, so that it can be 
easily located (see Fig. 8).

      
Fig. 8: Highlighted clusters in sketches
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There are many other facilities available, including simultaneously highlighting several clusters 
in the sketch, and limiting the points, lines and constraints visualized in the sketch to certain 
clusters, either highlighted or other ones. In this way, it is possible to concentrate on particular 
clusters in the sketch, and how these are related to each other, without being hampered by 
other information in the full sketch.
If the outcome of the geometric constraint solver is that a system of geometric constraints is 
underconstrained, then there are two ways to inform the user about the whereabouts of the 
problem: in the decomposition view and in the sketch.
In  the  decomposition  view,  clusters  will  turn  red  if  they  are  underconstrained.  The  full 
decomposition tree will only be partially expanded, to where the problems arise. In Fig. 9a a 
simple  sketch  is  shown of  five  distance  constraints,  defined  between four  points.  The  two 
connected triangles in 3D form a structurally underconstrained system. Once the decomposition 
view is  opened,  the  user  can  clearly  see  in  the  partially  expanded tree  that  the  model  is 
underconstrained, and the problematic clusters are shown (see Fig. 9b). The two green clusters 
(which are the triangles in the sketch) cannot be combined, which is indicated by the red root 
cluster. The full decomposition of the system is visualized in Fig. 9c.
We have already seen that we can highlight clusters from the decomposition view in the sketch. 
By applying different colors to cluster hulls in the sketch, we can inform the user about the 
constrainedness of a system of constraints. For underconstrained systems, we automatically 
visualize the cluster hulls at the level where the decomposition has failed, i.e. the clusters that 
cannot be merged (see Fig.  9d).  These clusters  are the same as the bottom two clusters, 
visualized  green,  in  the  decomposition  view  in  Fig.  9b.  They  are  by  themselves  well-
constrained, but are nevertheless drawn red in the sketch, because they cannot be merged. 
This  gives  more  insight  than  visualizing  the  cluster  hull  of  the  top  red  node  from  the 
decomposition view, which contains all the points that cannot be merged.

      
(a) underconstrained sketch  (b) decomposition       (c) full decomposition  (d) feedback in 
sketch

Fig. 9: Structurally underconstrained sketch with feedback after solving

The  visualization  techniques  for  overconstrained  systems  are  similar  to  those  for 
underconstrained systems, but there are some important differences, e.g. which clusters are 
visualized.
Clusters for systems that are overconstrained, are colored blue in the decomposition view. The 
full decomposition tree will again only be partially expanded, to where the problems arise. A 
simple example of a structurally overconstrained system is given in Fig. 10a. There are four 
points  and  seven  constraints  between  the  points:  six  distance  constraints  and  one  angle 
constraint.  The decomposition view visualizes the overconstrained clusters in blue (see Fig. 
10b). The information box that is shown for the lowest overconstrained cluster in the tree states 
that the cluster is structurally overconstrained, and gives a list of the points that are part of the 
cluster. In the full decomposition (see Fig. 10c), there are more blue nodes. The extra nodes all 
correspond to the same lowest overconstrained cluster, which is referenced by several other 
clusters (see Section 2). 
For the visualization of overconstrained systems in the sketch, the relevant cluster hulls are 
colored blue too  (see Fig.  10d).  The visualized clusters  are  the lowest  blue clusters  in  the 
decomposition view. In the lowest blue cluster in Fig. 10b, three distance constraints and one 
angle constraint occur in a triangle, which is a structurally overconstrained situation. With the 
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exact  cluster  where  the  problem occurs  indicated,  the  user  can  easily  remove  one  of  the 
constraints in that cluster.

            
(a) overconstrained sketch    (b) decomposition           (c) full decomposition         (d) 
feedback in sketch

Fig. 10: Structurally overconstrained sketch with feedback after solving

A well-constrained system of geometric constraints is the simplest case. Because there is no 
constrainedness problem, no clusters will be automatically visualized in the sketch. However, 
the clusters can still be seen and selected in the decomposition view (see Fig. 6 and Fig. 7), and 
related with the sketch by highlighting, which may be useful for further changes.
In the examples given above, structurally under- and overconstrained situations occurred. In 
case of incidentally under- and overconstrained situations, similar feedback and interaction are 
provided.
Because combinations of (structurally and/or incidentally) under- and overconstrainedness can 
occur in a single system, for each cluster in the decomposition the constrainedness can be 
obtained from the information box, shown when the cluster is selected.
As already indicated,  structurally  under-  and overconstrained situations can be resolved by 
adding, respectively, removing constraints; incidentally under- and overconstrained situations 
by changing the values of parameters of existing constraints. As constraint systems are often 
very  complex,  and  even  combinations  of  under-  and  overconstrainedness  can  occur  in  a 
system, it may be difficult to make a system well-constrained. For example, removing one of 
the  constraints  in  a  structurally  overconstrained  situation  may  lead  to  a  structurally 
underconstrained situation. The workbench can effectively support the user in creating a well-
constrained system. In the following section, a case study will be described to illustrate this.
Once the system of constraints is well-constrained, the solution obtained from the solver is 
shown in the solution view. In this view, the new point positions, computed by the solver, are 
visualized. During solving, one of the points will be chosen to be at the origin of the coordinate 
system. From there the positions will be determined for the other points, relative to the one in 
the origin. Lines between the points are also visualized in the solution view, but the constraints 
are not. The solution view gives insight into the resulting configuration of the points.
Once a solution has been determined and visualized in the solution view, this solution can be 
transferred back to the sketch. Synchronizing the solution with the sketch can be helpful in 
cases where the solution is better visualized than the originally created sketch. In certain cases 
where distances or angles are very small in the solution, we might like to keep the sketch as it 
is, because it is easier to interact with when further changes are required.

5 CASE STUDY
In  the  previous  sections,  some examples  of  simple  systems  of  geometric  constraints  have 
already been given. Different situations of constrainedness were discussed, and how they can 
be located in the decomposition view and in the sketch. In this section, a more complex case 
study is presented. The model will represent a tent, consisting of a hexagon as a base and a 
pyramid as a roof. During the construction of the model, the facilities of the workbench are used 
to create the final, well-constrained model.
First,  the 2D hexagonal base of the model is sketched, and distance constraints are added 
between  the  points.  Also,  a  point  is  created  in  the  center  of  the  hexagon,  and additional 
distance constraints are added between this point and the points that form the base. Another 
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six points are added to the model, with distance constraints between the points in the base and 
the new points, and distance constraints to mutually constrain the new points (see Fig. 11a).

           (a) underconstrained sketch (b) feedback in sketch              (c) well-
constrained sketch

Fig. 11: Basic configuration

When the sketch is sent to the solver, it turns out that it is structurally underconstrained. The 
hulls of the involved clusters are visualized in the sketch (see Fig. 11b). The base consists of 
five clusters, and the other twelve distances are represented as clusters on their own. All the 
clusters are turned red, which indicates that the geometric constraint solver could not create 
and combine tetrahedrons to create a solution. There are too few constraints defined, which is 
also indicated in the statusbar of the workbench. If the decomposition view is opened, a red 
root node is visualized with seventeen clusters below it: the five clusters of three points (the 
cluster  hulls  at  the base),  and the  twelve  clusters  of  two points  (connected  by a  distance 
constraint). These clusters cannot be merged. 
To resolve the problem, new constraints should be defined. With the methods used by the 
geometric  constraint  solver  in  mind,  tetrahedrons  can  be  constructed  to  obtain  a  well-
constrained model, as illustrated in Fig. 11c. Obviously, this is not the only way to correctly 
constrain the model.
In the next  step,  a roof  is  added to create the final  model.  By adding an apex point,  and 
connecting new distances to it, the sketch is constrained and the roof is created (see Fig. 12a). 
Although the roof seems nicely modeled and constrained, the solver returns that the sketch is 
structurally overconstrained, and in the sketch it is clearly shown that the overconstrainedness 
occurs in the added roof (see Fig. 12b). 

             (a) overconstrained sketch (b) feedback in sketch              (c) well-
constrained sketch

Fig. 12: Complete configuration

The whole roof cluster is turned blue, thus too many constraints were added here. Removing 
the distance constraints one by one, it turns out that three distance constraints are enough to 
constrain the roof (see Fig. 12c). Lines were used to replace the redundant constraints, so the 
intended sketch is maintained.
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6. CONCLUSIONS
A  workbench  to  support  the  user  of  a  geometric  constraint  solver,  in  particular  a  graph 
constructive solver, was presented. A sketcher can be used to define a model, with 3D points, 
lines  and  geometric  constraints.  It  offers  several  useful  facilities  to  intuitively  create  and 
interact with a system of 3D geometric constraints. After a sketch has been created by the user, 
the  geometric  constraint  solver  can  be  initiated.  Feedback  from  the  solver  is  difficult  to 
interpret. Therefore two views were introduced, the decomposition view and the solution view, 
to present the user more information about the system of geometric constraints.
The decomposition view visualizes the decomposition of the problem into clusters. If the system 
is under- or overconstrained, the user can directly see the specific location where the problem 
occurs, because only that part of the tree is visualized and the involved clusters are given a 
special color. However, (part of) the tree can be quickly expanded or collapsed to obtain or hide 
information. From the decomposition view, there is a connection with the sketch: selection of 
one of the clusters in the decomposition view, will lead to the corresponding cluster hull being 
highlighted in the sketch. This offers direct feedback on the cluster's contents and location, 
which can be very useful when browsing the graph.
In case of a constrainedness problem, the involved clusters are also visualized in the sketch, via 
their  hulls,  in  a special  color.  However,  information  about the whole  decomposition is  only 
available in the decomposition view, to limit the amount of information in the sketch. 
Once the model is well-constrained, the user can obtain the final solution in the solution view. 
From this view, the model can be synchronized with the original sketch, so a better sketch can 
be obtained to further develop the intended model.
Many of these facilities are also applicable with other geometric constraint solvers. The sketcher 
is independent from the solver. The decomposition view is, obviously, only applicable when the 
solver returns a decomposition, which is not only the case for graph constructive solvers, or 
bottom-up decomposition solvers,  but also for  top-down decomposition solvers [5,  11].  The 
same applies to the cluster feedback in the sketch, which is tied to a decomposition. For other 
solvers, however, other feedback might be useful. The solution view is again independent from 
the solver. The additional implementation effort required for another solver thus depends on 
the character of the solver.
Several extensions of the workbench are possible, including the following.
A decomposition is now shown as a tree, which implies that some clusters occur several times. 
This leads to a rather complex decomposition, which would not be necessary if  it would be 
visualized as a graph instead of a tree. Less nodes would be visualized and the representation 
would, in fact, also correspond better to the actual solving strategy. 
It is attractive to have control over the basic elements of a sketch, i.e. the points, lines and 
constraints between them, especially when one has to create basic shapes or test a geometric 
constraint solver. However, when large models have to be created, standard 3D shapes, which 
contain  several  predefined  constraints,  are  indispensable.  A  model  could  have  a  simpler 
representation, i.e. it might not show all the constraints defined in it, and the user could modify 
the object on a less detailed level. This would simplify the creation process, and the user could 
concentrate on problems like correctly connecting different shapes. The workbench can be very 
supportive in this too.
Currently, only points, lines and two types of constraints can be defined. With these constraints, 
almost  any model  can be created.  However,  to  give a user  more choice of  primitives  and 
constraints, could lead to a simpler representation and a better understanding of a model.
When a user tries to resolve an under- or overconstrained system, he still needs to have some 
understanding of the applied solving method. Otherwise, wrong choices can easily be made 
when  adding  or  removing  constraints,  or  when  changing  values  of  parameters.  With  the 
introduction of, for example, an expert system, the user might be advised how to change the 
system to make it well-constrained. 
Altogether, the workbench enables a user to intuitively create a sketch with 3D constraints, and 
visually informs the user where problems occur, if the constraints are not satisfied. This can 
substantially help to create well-constrained systems in an easier way. Further development of 
the workbench along the proposed lines, will result in a version that is even more user-friendly 
than the current one, and can be used to specify more complex constraint systems.
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