
A Workbench for Geometric Constraint Solving

Rogier de Regt1, Hilderick A. van der Meiden2 and Willem F. Bronsvoort3

1Delft University of Technology, Rogier.de.Regt@gmail.com
2Delft University of Technology, H.A.vanderMeiden@tudelft.nl

3Delft University of Technology, W.F.Bronsvoort@tudelft.nl

ABSTRACT

Geometric constraints are used in geometric and feature modeling systems to
impose conditions on the shape of a product. To determine whether these
conditions are correctly applied to a model, and to compute the final solution in
which all conditions are satisfied, a geometric constraint solver is used.
Current constraint solvers usually handle only 2D constraints. With the
introduction of solvers that support 3D constraints, the interaction and
visualization techniques for 2D constraints are no longer sufficient. Also, the
feedback provided by the 2D constraint solvers, especially if problems are not
well-constrained, is limited and not applicable to 3D modeling environments.
In this paper, a workbench is presented that can assist a user in defining
geometric constraints in 3D and in creating a valid 3D model. Feedback provided
by the solver is presented to the user in several ways that enable him to easily
interpret this feedback.

Keywords: Geometric constraint solving, graph constructive approach,
sketching, visual feedback

1. INTRODUCTION
Geometric constraint solvers are an important part of, in particular, parametric and feature-
based CAD systems. Parametric and feature models include constraints that impose conditions
on the model of a product. A geometric constraint solver is used to find a configuration for a set
of geometric objects, such that these satisfy a given set of constraints between them.
In current CAD systems, the graphical user interface (GUI) usually gives the user the ability to
create a 2D sketch, after which constraints (distances, radii, angles) can be added to the
sketch. Operations like extrusion can be applied to a sketch, to create a 3D component.
Additionally, between 3D components, simple constraints can be defined to connect them to
each other.
However, a model may be incomplete or the specified constraints can be conflicting, in
particular if there are not enough constraints or too many constraints defined between the
objects. These situations are called underconstrained, respectively overconstrained. The
geometric constraint solver is used to detect such conflicts, and gives feedback to the user
when a conflict has been detected. If there are no conflicts, then the constraint solver will
compute the resulting configuration. In practice, it turns out that it is quite hard to define a
system of constraints that is well constrained, and to get insight into why and where a system
is under- or overconstrained.
Problems become even more severe when 3D systems, in which constraints can be defined on
3D geometric objects, are considered. Although various 3D constraint solving methods are
available [4], e.g. graph constructive methods [5], there are few facilities to easily define 3D
constraint systems and to get insight into the results of the solver.
In this paper, a workbench is presented that supports the user in these respects. Constraints
can be defined in an interactive way by a 3D sketcher, and feedback, obtained from the
constraint solver, is presented to the user in several helpful ways. A 3D graph constructive

1

mailto:W.F.Bronsvoort@tudelft.nl
mailto:H.A.vanderMeiden@tudelft.nl
mailto:Rogier.de.Regt@gmail.com

constraint solver is used here, but many of the facilities of the workbench are more generally
applicable with other geometric constraint solvers too. The main goal of the paper is to show
the feasibility and usefulness of a workbench for geometric constraint solving in general.
Section 2 gives some background on geometric constraint solving, and in particular on the
graph constructive solver used here. Section 3 introduces the functionality of the workbench as
a whole, and of the 3D sketcher in particular, and also gives some implementation aspects.
Section 4 elaborates the feedback offered by the workbench to the user. Section 5 presents a
case study. Section 6 gives some conclusions.

2. GEOMETRIC CONSTRAINT SOLVING
A system of geometric constraints consists of a finite set of geometric elements (the variables)
and a finite set of geometric constraints (the relations) defined between these elements. In a
CAD system, the user often draws a 2D/3D sketch that consists of points, lines and circles in 2D,
and planes, spheres and cylinders in 3D. This is followed by the assignment of geometric
constraints, such as distance, angle, parallelism, concentricity, tangency and perpendicularity,
between geometric elements. When the geometric elements and constraints have been
defined, the user can initiate the solving process to solve the system of constraints (this can
also be done automatically when the system is changed, if incremental solving techniques are
used).
During the solving process, it may turn out that the system of constraints is not well specified
by the user. To handle this, the solver can return three general distinct outcomes: under-, over-
or well-constrainedness. When solving a system of geometric constraints, the system may have
some degrees of freedom (DOF) left. In that case, an infinite number of solutions is possible.
This situation is called underconstrained. A constraint problem is overconstrained if there is no
solution to the problem. A well-constrained problem is a problem that has a finite number of
solutions.
Constraints that are not represented by actual values, but in general terms, have to be solved
by a generic solver. Such a solver determines whether the geometric elements can be placed
using the constraints, without taking the values that can be assigned to the constraints and
geometric elements into account. If explicit values were assigned to each of the constraints, an
instance of the general problem would have been created; such problems are solved by an
instance solver. Several techniques can be used to solve constraint problems [4], including the
following.
With local propagation [2], the system of constraints is represented in an undirected graph. The
nodes of the graph represent the variables, constants and operations in the constraints. The
individual constraints can usually be solved by several methods, and the constraint solver
selects one of these methods. A problem cannot be solved if there are cycles among the
constraints, and this makes local propagation only useful for simple systems of constraints.
Numerical constraint solvers translate the constraints into a system of algebraic equations that
are solved by applying iterative techniques, e.g. the Newton-Raphson method [10] or the
relaxation method [13]. Numerical constraint solving is a general method and is, in comparison
to other constraint solving techniques, able to handle large nonlinear systems. However, a
problem that often occurs is that geometric constraint systems have several solutions, whereas
an iterative method can provide only one. Another problem is that if the initial configuration is
not well chosen, the configuration will not converge to a solution or to an unwanted solution.
Alternatives have been brought up, e.g. the use of homotopy [9] and bisection [1]. These
methods provide better solutions in some of the cases where normally convergence problems
arise, but they are slow compared to the Newton-Raphson method.
Just like numerical constraint solvers, symbolic constraint solvers try to solve a system of
algebraic equations. But instead of using iterative techniques, symbolic algebraic methods are
used to find the generic solution. Used methods are Wu-Ritt's decomposition algorithm [15] and
the Gröbner basis method [8]. They change the set of equations to new forms, which are easier
to solve. A problem may occur when certain equations in the basis function algebraically
depend on one another when evaluated with specific constraint values [6]. At a generic level
(where explicit values are avoided in the system of equations), the solver may come to the
conclusion that a solution exists, whereas no specific configuration can be found to satisfy the

2

system of constraints. Other drawbacks are that the algorithm may require exponential running
times and memory (w.r.t. the number of constraints).
Rule constructive solvers use rewrite rules to discover and execute the constraint steps [3, 7].
For example, Brüderlin [3] makes use of Prolog to define constraints in terms of rules (based on
compass and ruler constructions) and facts (defined by the user in a sketch), which has the
advantage that it can be easily extended to make the system more powerful. However, this
method of constraint solving is not efficient when large systems of constraints have to be
solved. This is due to the searching and matching of the facts in the rule base.
Graph constructive solvers consist of two phases; the first phase is the analysis phase and the
second the construction phase. In the analysis phase, the constraint problem, represented by a
graph, is decomposed into several subproblems that can be solved, and be merged into the
solution of the complete problem. For example, Hoffmann et al. [5, 6] make use of clusters to
solve geometric constraint problems. In the second phase, the construction phase, the
subproblems are actually solved and merged. This is often done by symbolic or numerical
methods. Indeed, with graph constructive solving, different combinations of approaches can be
utilized to create a specific constraint solver for a specific task. The approach is efficient by
decomposing a large system of constraints into smaller subproblems, which can usually be
easily solved. Therefore, this is a popular approach to geometric constraint solving. In this
paper, it is assumed that the workbench is using a 3D graph constructive solver. The most
important aspects of the specific solver used here will be discussed now; see [14] for more
details.
The class of geometric constraint problems that can be solved is as follows. The variables are
limited to 3D points and the constraints are limited to two types: distance (between two points)
and angle (between the two lines from a point to two other points) constraints. The parameters
of the constraints, i.e. the distance and angle values, are also part of the problem definition. A
problem is represented as a constraint graph, a bipartite graph of which a vertex (node) is
either a variable or a constraint, and an edge between a variable and a constraint indicates that
the constraint is imposed on that variable.
The first phase of the graph constructive method is the analysis phase. In this phase, a
constraint problem is decomposed into subproblems of which the solution can be determined
relatively easy. Subproblem solutions are represented by clusters of points of which the relative
position and orientation are known. A cluster can be considered as a rigid body that can be
translated and rotated, while remaining a solution.
When a cluster is formed, the relative position of the points in the cluster must be determined,
where all constraints on these points must be considered simultaneously. These constraints can
form cycles in the constraint graph, which must be solved simultaneously. Here, only cycles
consisting of three constraints on three points are solved. The results are three-point clusters,
i.e. triangles. For example, when the three distances are known between three points, then
their relative position can be computed. Rules for this are referred to as triangle solving rules.
The decomposition thus begins with the selection of clusters consisting of three points, of which
the relative orientation and position can be determined by triangle solving rules.
In this phase, the merging of clusters is also planned, to create a complete decomposition of
the problem. Clusters can be merged if they share a number of point variables, i.e. if they
contain point variables with the same name, such that no degrees of freedom are left between
these clusters. Three three-point clusters can be merged if they share four points, i.e. the three
triangles can be merged into a tetrahedron, which is a 3D cluster. Two 3D clusters, which can
be tetrahedrons or more complex configurations, that share three points can be merged by
transforming one of the clusters such that the shared points coincide. These rules are referred
to as cluster merging rules.
By merging clusters, larger clusters are obtained from which previously unknown distances and
angles can be determined. For example, if three three-point clusters are merged into a
tetrahedron, all distances and angles in the tetrahedron are known. The newly known distances
and angles may, in turn, be used to satisfy other (cycles of) constraints.
In some cases, the decomposition into subproblems fails, in particular if there are too many or
too few constraints defined, such that the relative position and/or orientation cannot be
determined. These structural problems can be divided into two groups: structurally
underconstrained problems and structurally overconstrained problems. A well-constrained

3

tetrahedron consists of four points and six distances (see Fig. 1a). If there are not enough
constraints defined, then the problem is structurally underconstrained (see Fig. 1b). If there are
too many constraints defined, then the problem is structurally overconstrained (see Fig. 1c).
However, even if there are exactly enough constraints defined, and thus the decomposition is
successful, it is not guaranteed that the model is well-constrained, as will be shown later.

(a) well-constrained (b) structurally underconstrained (c) structurally overconstrained

Fig. 1: Constrainedness of a tetrahedron

If the well-constrained tetrahedron from Fig. 1a is decomposed, then the result can be as shown
in Fig. 2. This diagram shows the clusters created and the relations between these clusters.
Distance constraints are shown as two-point clusters. The diagram shows the root cluster at the
top, which is formed by merging the clusters below it that are connected to it by lines. The
decomposition algorithm works bottom-up, first creating a three-point cluster ABC by merging
the distance constraints AB, AC and BC. This forms one side of the tetrahedron. Once a distance
constraint has been merged into a cluster, it cannot be used to form other clusters, unless it is
derived from the existing cluster. For example, to create cluster ACD, the distance constraints
AC, AD and CD are needed, but AC has already been merged into cluster ABC. Therefore, AC is
first derived from ABC, as can be seen in the decomposition, and then merged with AD and CD
to form cluster ACD. To form cluster BCD, first BC and CD are derived from previously formed
clusters, and then merged with BD. The clusters ABC, ACD and BCD are merged into cluster
ABCD, which contains all variables and constraints, and therefore the constraint problem is
structurally well-constrained.

Fig. 2: Decomposition of a well-constrained tetrahedron

The decomposition of the underconstrained tetrahedron from Fig. 1b is visualized in Fig. 3. In
contrast to the well-constrained decomposition, there are now only two three-point clusters,
ABC and ADB. Because there is no longer a distance constraint defined between the points D
and C, a third three-point cluster cannot be formed. Now the three-point clusters have only two
points in common, which is not enough to combine the clusters (for that four points are
necessary). If clusters cannot be combined to one root cluster, because of too few constraints,
then the constraint problem is structurally underconstrained.

4

Fig. 3: Decomposition of a structurally underconstrained tetrahedron

The decomposition of the overconstrained problem from Fig. 1c is very similar to the
decomposition of the well-constrained problem in Fig. 2. The difference is that now the three-
point cluster BCD cannot be determined, because there are too many constraints defined,
which makes the cluster overconstrained and the constraint problem as a whole as well.
After the decomposition and the merge plan have been determined in the analysis phase, in the
construction phase the triangular subproblems are solved and the clusters are merged to
actually obtain the solution of the constraint problem.
To solve a triangular subproblem, which contains three points, three distances must be known,
or two distances and one angle, or two angles and one distance. Five triangle solving rules are
available for this. For example, if the three distances between the three points are known, two
points can be arbitrarily fixed at the corresponding distance, and the third computed from the
position of these two points and the other two distances. The other triangle solving rules all
involve one or two angles, but are also straightforward. In solving a particular triangular
problem, two solutions may be possible. One of these solutions is selected, based on a
prototype, i.e. a sketch of the intended solution provided by the user, so that, in the end, only
the intended solution results, instead of several solutions. See [14] for details on this.
If solving a cluster with a triangle solving rule yields no solutions, then the cluster is incidentally
overconstrained. This happens, for example, if the sum of two distances is smaller than the
third distance.
Three three-point clusters, resulting from solving triangular subproblems, are merged into a
tetrahedron if they share four points. The three clusters that are to be merged are rigidly
transformed, i.e. translated and rotated, in such a way that the shared points coincide, and a
tetrahedron is formed. In merging three three-point clusters, again two solutions may be
possible, and again one of these solutions is selected using the prototype.
If the three three-point clusters cannot be merged, because there is no rigid transformation of
the clusters such that the shared points form a tetrahedron, then the cluster is incidentally
overconstrained again.
Two 3D clusters, which can be tetrahedrons or more complex clusters, that share three points
are merged by rigidly transforming one cluster such that the shared points coincide. The
required transformation is straightforward, and a new cluster is formed in this way.
To merge clusters that share three points, the relative position of these points in each cluster
must obviously be equivalent; otherwise a rigid transformation cannot be determined. If they
are not equivalent, then the system of constraints is incidentally overconstrained again. Cluster
merging can also fail here because a set of three points does not always form a triangle. A
triangle degenerates to a line if one of the edges has zero length, and it degenerates to a point
if all edges have zero length. When merging two clusters based on a set of three shared points,
and these points are degenerate in both clusters, then the merge cannot take place because
one or more rotational degrees of freedom are left. In this case, the system is considered
incidentally underconstrained.
Structurally over- and underconstrained situations can be resolved by removing, respectively,
adding constraints. Incidentally over- and underconstrained situations, on the other hand, can
be resolved by changing the values of parameters of existing constraints. As constraint
problems are often very complex, it may become difficult for a user to locate where a
problematic situation occurs, and how to resolve it. The workbench for geometric constraint
solving, introduced in the next section, can be very helpful in this respect.

5

3 THE WORKBENCH
The workbench for geometric constraint solving consists of several components. These
components, and how they relate to each other, are shown in Fig. 4. The part of the diagram
that is shaded, is the GUI from which the user can take actions, the other part is the graph
constructive constraint solver.

Fig. 4: Workbench components

The 3D sketcher provides the user with an interface to create a rough sketch by placing points
and lines. During or after placing these points and lines, the user can add constraints to the
model. During the construction of the sketch, the constraint data is stored in the constraint
graph, and the sketch without the constraints in the prototype. Performing actions in which the
constraints are altered will directly result in an update of the constraint graph. When the user
issues the command to solve the system of geometric constraints, then this system consisting
of the constraint graph and prototype information will be used to solve the system. After the
solving process, the result is returned. This initiates other processes, to create visual feedback.
Different views are used to return feedback to the user about the system of geometric
constraints and to help producing the desired sketch. The views are used to visualize the
information retrieved from the solver and to exchange information with the sketcher.
In the decomposition view, the decomposition of the system of constraints into clusters, as
returned by the solver, is shown. This is very useful when a system is under- or
overconstrained. Individual clusters can be selected in this view, which will result in a similar
selection in the sketcher.
If the system of geometric constraints is well-constrained, the final solution can be visualized in
the solution view. In this view, the sketch is transformed into a model where all constraints are
satisfied. The sketch can be synchronized with the model in the solution view.
The decomposition view and the solution view, and the synchronization of the latter with the
sketch, will be discussed in Section 4. Here the functionality of the sketcher will be outlined.
Another sketcher for defining systems of constraints, somewhat similar to ours, is presented in
[12]. However, that sketcher is used to support solution selection, whereas our workbench is
intended to support creation of well-constrained systems. Basically, the functionality of our
solver consists of the following:

• the usual user interface components, such as a taskbar, a toolbar, viewports, an object
panel, and a status bar;

• points can be created, and are visualized as small spheres;
• lines can be created between two points, and are visualized as thin cylinders;
• the sketch is basically a wire frame, consisting of points and lines;
• different viewports can be used to simultaneously display a side, a top, a front and a

perspective view of the sketch, for the creation and exploration of the sketch;

6

• facilities for zooming, panning and rotating in these viewports;
• a distance constraint can be created by selecting two points or a line;
• a distance constraint is visualized as a thin cylinder between the two points, which may

replace an existing line between the points, in a color different from the one used for lines;
• an angle constraint can be created by selecting three points or two lines (or distance

constraints);
• an angle constraint is visualized as a transparent circle section between two lines (or

distance constraints);
• the possibility to fix a particular point, which will fix its position and give it a different color;
• the ability to specify and consult specific information, e.g. the position of a point, the

distance parameter in a distance constraint, and the angle parameter in an angle constraint,
in a dialogue box.

The user interface of the sketcher is shown in Fig. 5. The points are visualized as small spheres,
and the lines and distance constraints as thin cylinders, to create depth in the sketches, in
particular a better distinction between overlapping elements, and to make selection of
elements easier.

Fig. 5: User interface of the sketcher
The workbench has, just like the constraint solver, been implemented by using Python, an
object-oriented programming language. Qt [16] has been used to develop the user interface,
making use of PyQt bindings [17]. For the 3D visualizations, OpenGL has been used, making
used of PyOpenGL bindings [18].

4. VISUAL FEEDBACK
Once a system of geometric constraints has been created in the sketcher, it can be sent to the
constraint solver to be solved. The result returned by the solver is often difficult to interpret,
and it would be very helpful if the user would get feedback on how the system is constrained,
and, if it is well-constrained, on what the final solution looks like. In this section, we discuss two
views for the user to help in this respect: the decomposition view and the solution view. These
views are fully integrated with the sketcher, for which also several feedback facilities are
presented.
First of all, the user gets a textual indication on how the system is constrained: well-
constrained, (structurally or incidentally) underconstrained, or (structurally or incidentally)
overconstrained. Notice that if the system is not well-constrained, it may be simultaneously
under- or overconstrained in several parts, or even underconstrained in one part and
overconstrained in another part.
The decomposition view shows the decomposition of the system into clusters in the form of a
tree. The decomposition for the well-constrained tetrahedron of Fig. 1a is shown in Fig. 6. It
resembles the decomposition shown in Fig. 2.

7

Fig. 6: Decomposition view

Large models lead to large decompositions and need basic, but essential interaction techniques
to allow the user to investigate the decomposition. The whole tree or parts of it can be shown in
the view. Together with a zoom option, translation sliders can be used to zoom in on a specific
part of the tree. In addition, branches of the tree can be collapsed, so the user can concentrate
on other branches. Collapsing part of the tree often results in white space, which is re-used: the
tree is regenerated on the basis of the visibility of the clusters.
Clusters do not only hold information on how they relate to other clusters, but they also contain
information that can be shown, after selection, in a transparent box (see Fig. 7), so it does not
occlude parts of the tree. The box shows the constrainedness of the cluster, and the names of
the points belonging to that cluster. If an individual point is selected, the name and position of
the point are shown.

Fig. 7: Cluster information
Although the decomposition view can be useful to get feedback about the constrainedness of a
system of geometric constraints, we also enable the user to get feedback in the sketch. Cluster
information can be visualized in the sketch by a cluster hull, a convex hull containing the points
that are part of the cluster. A cluster hull can consist of only one point or one distance
constraint, but can also contain several points, lines and constraints. When the user selects a
cluster in the decomposition view, the cluster will be highlighted in the sketch, so that it can be
easily located (see Fig. 8).

Fig. 8: Highlighted clusters in sketches

8

There are many other facilities available, including simultaneously highlighting several clusters
in the sketch, and limiting the points, lines and constraints visualized in the sketch to certain
clusters, either highlighted or other ones. In this way, it is possible to concentrate on particular
clusters in the sketch, and how these are related to each other, without being hampered by
other information in the full sketch.
If the outcome of the geometric constraint solver is that a system of geometric constraints is
underconstrained, then there are two ways to inform the user about the whereabouts of the
problem: in the decomposition view and in the sketch.
In the decomposition view, clusters will turn red if they are underconstrained. The full
decomposition tree will only be partially expanded, to where the problems arise. In Fig. 9a a
simple sketch is shown of five distance constraints, defined between four points. The two
connected triangles in 3D form a structurally underconstrained system. Once the decomposition
view is opened, the user can clearly see in the partially expanded tree that the model is
underconstrained, and the problematic clusters are shown (see Fig. 9b). The two green clusters
(which are the triangles in the sketch) cannot be combined, which is indicated by the red root
cluster. The full decomposition of the system is visualized in Fig. 9c.
We have already seen that we can highlight clusters from the decomposition view in the sketch.
By applying different colors to cluster hulls in the sketch, we can inform the user about the
constrainedness of a system of constraints. For underconstrained systems, we automatically
visualize the cluster hulls at the level where the decomposition has failed, i.e. the clusters that
cannot be merged (see Fig. 9d). These clusters are the same as the bottom two clusters,
visualized green, in the decomposition view in Fig. 9b. They are by themselves well-
constrained, but are nevertheless drawn red in the sketch, because they cannot be merged.
This gives more insight than visualizing the cluster hull of the top red node from the
decomposition view, which contains all the points that cannot be merged.

(a) underconstrained sketch (b) decomposition (c) full decomposition (d) feedback in
sketch

Fig. 9: Structurally underconstrained sketch with feedback after solving

The visualization techniques for overconstrained systems are similar to those for
underconstrained systems, but there are some important differences, e.g. which clusters are
visualized.
Clusters for systems that are overconstrained, are colored blue in the decomposition view. The
full decomposition tree will again only be partially expanded, to where the problems arise. A
simple example of a structurally overconstrained system is given in Fig. 10a. There are four
points and seven constraints between the points: six distance constraints and one angle
constraint. The decomposition view visualizes the overconstrained clusters in blue (see Fig.
10b). The information box that is shown for the lowest overconstrained cluster in the tree states
that the cluster is structurally overconstrained, and gives a list of the points that are part of the
cluster. In the full decomposition (see Fig. 10c), there are more blue nodes. The extra nodes all
correspond to the same lowest overconstrained cluster, which is referenced by several other
clusters (see Section 2).
For the visualization of overconstrained systems in the sketch, the relevant cluster hulls are
colored blue too (see Fig. 10d). The visualized clusters are the lowest blue clusters in the
decomposition view. In the lowest blue cluster in Fig. 10b, three distance constraints and one
angle constraint occur in a triangle, which is a structurally overconstrained situation. With the

9

exact cluster where the problem occurs indicated, the user can easily remove one of the
constraints in that cluster.

(a) overconstrained sketch (b) decomposition (c) full decomposition (d)
feedback in sketch

Fig. 10: Structurally overconstrained sketch with feedback after solving

A well-constrained system of geometric constraints is the simplest case. Because there is no
constrainedness problem, no clusters will be automatically visualized in the sketch. However,
the clusters can still be seen and selected in the decomposition view (see Fig. 6 and Fig. 7), and
related with the sketch by highlighting, which may be useful for further changes.
In the examples given above, structurally under- and overconstrained situations occurred. In
case of incidentally under- and overconstrained situations, similar feedback and interaction are
provided.
Because combinations of (structurally and/or incidentally) under- and overconstrainedness can
occur in a single system, for each cluster in the decomposition the constrainedness can be
obtained from the information box, shown when the cluster is selected.
As already indicated, structurally under- and overconstrained situations can be resolved by
adding, respectively, removing constraints; incidentally under- and overconstrained situations
by changing the values of parameters of existing constraints. As constraint systems are often
very complex, and even combinations of under- and overconstrainedness can occur in a
system, it may be difficult to make a system well-constrained. For example, removing one of
the constraints in a structurally overconstrained situation may lead to a structurally
underconstrained situation. The workbench can effectively support the user in creating a well-
constrained system. In the following section, a case study will be described to illustrate this.
Once the system of constraints is well-constrained, the solution obtained from the solver is
shown in the solution view. In this view, the new point positions, computed by the solver, are
visualized. During solving, one of the points will be chosen to be at the origin of the coordinate
system. From there the positions will be determined for the other points, relative to the one in
the origin. Lines between the points are also visualized in the solution view, but the constraints
are not. The solution view gives insight into the resulting configuration of the points.
Once a solution has been determined and visualized in the solution view, this solution can be
transferred back to the sketch. Synchronizing the solution with the sketch can be helpful in
cases where the solution is better visualized than the originally created sketch. In certain cases
where distances or angles are very small in the solution, we might like to keep the sketch as it
is, because it is easier to interact with when further changes are required.

5 CASE STUDY
In the previous sections, some examples of simple systems of geometric constraints have
already been given. Different situations of constrainedness were discussed, and how they can
be located in the decomposition view and in the sketch. In this section, a more complex case
study is presented. The model will represent a tent, consisting of a hexagon as a base and a
pyramid as a roof. During the construction of the model, the facilities of the workbench are used
to create the final, well-constrained model.
First, the 2D hexagonal base of the model is sketched, and distance constraints are added
between the points. Also, a point is created in the center of the hexagon, and additional
distance constraints are added between this point and the points that form the base. Another

10

six points are added to the model, with distance constraints between the points in the base and
the new points, and distance constraints to mutually constrain the new points (see Fig. 11a).

 (a) underconstrained sketch (b) feedback in sketch (c) well-
constrained sketch

Fig. 11: Basic configuration

When the sketch is sent to the solver, it turns out that it is structurally underconstrained. The
hulls of the involved clusters are visualized in the sketch (see Fig. 11b). The base consists of
five clusters, and the other twelve distances are represented as clusters on their own. All the
clusters are turned red, which indicates that the geometric constraint solver could not create
and combine tetrahedrons to create a solution. There are too few constraints defined, which is
also indicated in the statusbar of the workbench. If the decomposition view is opened, a red
root node is visualized with seventeen clusters below it: the five clusters of three points (the
cluster hulls at the base), and the twelve clusters of two points (connected by a distance
constraint). These clusters cannot be merged.
To resolve the problem, new constraints should be defined. With the methods used by the
geometric constraint solver in mind, tetrahedrons can be constructed to obtain a well-
constrained model, as illustrated in Fig. 11c. Obviously, this is not the only way to correctly
constrain the model.
In the next step, a roof is added to create the final model. By adding an apex point, and
connecting new distances to it, the sketch is constrained and the roof is created (see Fig. 12a).
Although the roof seems nicely modeled and constrained, the solver returns that the sketch is
structurally overconstrained, and in the sketch it is clearly shown that the overconstrainedness
occurs in the added roof (see Fig. 12b).

 (a) overconstrained sketch (b) feedback in sketch (c) well-
constrained sketch

Fig. 12: Complete configuration

The whole roof cluster is turned blue, thus too many constraints were added here. Removing
the distance constraints one by one, it turns out that three distance constraints are enough to
constrain the roof (see Fig. 12c). Lines were used to replace the redundant constraints, so the
intended sketch is maintained.

11

6. CONCLUSIONS
A workbench to support the user of a geometric constraint solver, in particular a graph
constructive solver, was presented. A sketcher can be used to define a model, with 3D points,
lines and geometric constraints. It offers several useful facilities to intuitively create and
interact with a system of 3D geometric constraints. After a sketch has been created by the user,
the geometric constraint solver can be initiated. Feedback from the solver is difficult to
interpret. Therefore two views were introduced, the decomposition view and the solution view,
to present the user more information about the system of geometric constraints.
The decomposition view visualizes the decomposition of the problem into clusters. If the system
is under- or overconstrained, the user can directly see the specific location where the problem
occurs, because only that part of the tree is visualized and the involved clusters are given a
special color. However, (part of) the tree can be quickly expanded or collapsed to obtain or hide
information. From the decomposition view, there is a connection with the sketch: selection of
one of the clusters in the decomposition view, will lead to the corresponding cluster hull being
highlighted in the sketch. This offers direct feedback on the cluster's contents and location,
which can be very useful when browsing the graph.
In case of a constrainedness problem, the involved clusters are also visualized in the sketch, via
their hulls, in a special color. However, information about the whole decomposition is only
available in the decomposition view, to limit the amount of information in the sketch.
Once the model is well-constrained, the user can obtain the final solution in the solution view.
From this view, the model can be synchronized with the original sketch, so a better sketch can
be obtained to further develop the intended model.
Many of these facilities are also applicable with other geometric constraint solvers. The sketcher
is independent from the solver. The decomposition view is, obviously, only applicable when the
solver returns a decomposition, which is not only the case for graph constructive solvers, or
bottom-up decomposition solvers, but also for top-down decomposition solvers [5, 11]. The
same applies to the cluster feedback in the sketch, which is tied to a decomposition. For other
solvers, however, other feedback might be useful. The solution view is again independent from
the solver. The additional implementation effort required for another solver thus depends on
the character of the solver.
Several extensions of the workbench are possible, including the following.
A decomposition is now shown as a tree, which implies that some clusters occur several times.
This leads to a rather complex decomposition, which would not be necessary if it would be
visualized as a graph instead of a tree. Less nodes would be visualized and the representation
would, in fact, also correspond better to the actual solving strategy.
It is attractive to have control over the basic elements of a sketch, i.e. the points, lines and
constraints between them, especially when one has to create basic shapes or test a geometric
constraint solver. However, when large models have to be created, standard 3D shapes, which
contain several predefined constraints, are indispensable. A model could have a simpler
representation, i.e. it might not show all the constraints defined in it, and the user could modify
the object on a less detailed level. This would simplify the creation process, and the user could
concentrate on problems like correctly connecting different shapes. The workbench can be very
supportive in this too.
Currently, only points, lines and two types of constraints can be defined. With these constraints,
almost any model can be created. However, to give a user more choice of primitives and
constraints, could lead to a simpler representation and a better understanding of a model.
When a user tries to resolve an under- or overconstrained system, he still needs to have some
understanding of the applied solving method. Otherwise, wrong choices can easily be made
when adding or removing constraints, or when changing values of parameters. With the
introduction of, for example, an expert system, the user might be advised how to change the
system to make it well-constrained.
Altogether, the workbench enables a user to intuitively create a sketch with 3D constraints, and
visually informs the user where problems occur, if the constraints are not satisfied. This can
substantially help to create well-constrained systems in an easier way. Further development of
the workbench along the proposed lines, will result in a version that is even more user-friendly
than the current one, and can be used to specify more complex constraint systems.

12

ACKNOWLEDGEMENTS
Hilderick A. van der Meiden’s work is supported by The Netherlands Organisation for Scientific
Research (NWO).

REFERENCES
[1] Ait-Aoudia, S.; Mana, I.: Numerical solving of geometric constraints by bisection: a

distributed approach, International Journal of Computing & Information Sciences, 2:66–73,
2004.

[2] Borning, A.: The programming language aspects of Thinglab, a constraint-oriented
simulation laboratory, ACM Transactions on Programming Languages and Systems,
3(4):353–387, 1981.

[3] Brüderlin, B.: Constructing three-dimensional geometric objects defined by constraints, In
Symposium on Interactive 3D Graphics '86: Proceedings of the 1986 Workshop on
Interactive 3D Graphics, pages 111–129, New York, NY, USA, 1987. ACM Press.

[4] Dohmen, M.: A survey of constraint satisfaction techniques for geometric modeling,
Computers & Graphics, 19(6):831–845, 1995.

[5] Fudos, I.; Hoffmann, C.M.: A graph-constructive approach to solving systems of geometric
constraints, ACM Transactions on Graphics, 16(2):179–216, 1997.

[6] Hoffmann, C.M.; Vermeer, P.J.: Geometric constraint solving in R2 and R3, In Computing in
Euclidean Geometry, Second Edition, pages 266–298, Singapore, 1995. World Scientific
Publishing.

[7] Joan-Arinyo, R.; Soto-Riera, A.: Combining constructive and equational geometric
constraint-solving techniques, ACM Transactions on Graphics, 18(1):35–55, 1999.

[8] Kondo, K.: Algebraic method for manipulation of dimensional relationships in geometric
models, Computer-Aided Design, 24(3):141–147, 1992.

[9] Lamure, H.; Michelucci, D.: Solving geometric constraints by homotopy, In Proceedings
Third Symposium on Solid Modeling and Applications, pages 263– 269, New York, NY, USA,
1995. ACM Press.

[10] Light, R.A.; Gossard, D.C.: Modification of geometric models through variational geometry,
Computer-Aided Design, 14(4):209–214, 1982.

[11] Owen, J.C.: Algebraic solution for geometry from dimensional constraints, In Proceedings
Symposium on Solid Modeling Foundations and CAD/CAM Applications, pages 397-407,
New York, NY, USA, 1991. ACM Press.

[12] Sitharam, M.; Arbree, A.; Zhou, Y.; Kohareswaran, N.: Solution space navigation for
geometric constraint systems. ACM Transactions on Graphics 25(2):194–213, 2006.

[13] Sutherland, I.E.: Sketchpad: a man-machine graphical communication system. In AFIPS
Conference Proceedings 23, pages 323-328, 1963.

[14] van der Meiden, H.A.; Bronsvoort, W.F.: An efficient method to determine the intended
solution for a system of geometric constraints, International Journal of Computational
Geometry and Applications, 15(3):279–298, 2005.

[15] Wu, W.: Basic principles of mechanical theorem proving in elementary geometrics, Journal
of Automated Reasoning, 2(3):221–252, 1987.

[16] Qt distributed by Trolltech: "http://trolltech.com/products/qt".
[17] PyQt distributed by Riverbank. "http://www.riverbankcomputing.co.uk/".
[18] PyOpenGL: "http://pyopengl.sourceforge.net/".

13

